Input / Output Functions

Description

Contains a set of routines that retrieve quantities such as Green's functions, self-energies (see ed_greens_functions ) and observables (from ed_observables ) and pass them to the user, as well ass routines to read and store Green's function and self-energies.

Quick access

Routines:

ed_get_dens(), ed_get_denschi(), ed_get_dimp(), ed_get_docc(), ed_get_doubles(), ed_get_dph(), ed_get_dse(), ed_get_dund(), ed_get_dust(), ed_get_ehartree(), ed_get_eimp(), ed_get_eint(), ed_get_eknot(), ed_get_epot(), ed_get_evals(), ed_get_exct(), ed_get_exctchi(), ed_get_g0imp(), ed_get_gimp(), ed_get_imp_info(), ed_get_impurity_rdm(), ed_get_mag(), ed_get_neigen_sector(), ed_get_nsectors(), ed_get_pairchi(), ed_get_phi(), ed_get_quantum_soc_operators(), ed_get_sigma(), ed_get_sp_dm(), ed_get_spinchi(), ed_set_neigen_sector()

Used modules

External modules

Subroutines and functions

interface  ed_io/ed_get_gimp(self[, axis, type, z])

This subroutine gets from the EDIpack2 library the value of the impurity Green's function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity Green's function is an array having the following possible dimensions:

Parameters:

self (various shapes) [complex, inout] – Green's function matrix

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • type [character(len=*)] – Can be "n" for Normal (default), "a" for anomalous

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_dimp(self[, axis, z])

This subroutine gets from the EDIpack2 library the value of the impurity phonon's Green's function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity phonon's Green's function is an array having the following possible dimensions:

Parameters:

self (•) [complex, inout] – phonon's Green's function matrix

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_sigma(self[, axis, type, z])
This subrotine gets from the EDIpack2 library the value of the self-energy calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .
The self-energy is an array having the following possible dimensions:
Parameters:

self (various shapes) [complex, inout] – Green's function matrix

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • type [character(len=*)] – Can be "n" for Normal (default), "a" for anomalous

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_g0imp(self, bath[, axis, type, z])
This subroutine gets from the EDIpack2 library the value of the impurity non-interacting Green's function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .
It autonomously decides whether the system is single-impurity or real-space DMFT based on the bath shape

The impurity non-interacting Green's function is an array having the following possible dimensions:

The bath is an array having the following dimension:

  • [nb] for single-impurity DMFT

Where nb is the length of the bath array.

Parameters:
  • self (various shapes) [complex, inout] – Green's function matrix

  • bath (•) [real] – The bath vector

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • type [character(len=*)] – Can be "n" for Normal (default), "a" for anomalous

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_spinchi(self[, axis, z])

This subroutine gets from the EDIpack2 library the value of the impurity spin susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity spin susceptibility function is an array having the following possible dimensions:

Parameters:

self (•, •, •) [complex, inout] – spin susceptibility

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_denschi(self[, axis, z])

This subroutine gets from the EDIpack2 library the value of the impurity dens susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity dens susceptibility function is an array having the following possible dimensions:

Parameters:

self (•, •, •) [complex, inout] – spin susceptibility

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_pairchi(self[, axis, z])

This subroutine gets from the EDIpack2 library the value of the impurity pair susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity pair susceptibility function is an array having the following possible dimensions:

Parameters:

self (•, •, •) [complex, inout] – spin susceptibility

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_exctchi(self[, axis, z])

This subroutine gets from the EDIpack2 library the value of the impurity exct susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity exct susceptibility function is an array having the following possible dimensions:

Parameters:

self (•, •, •, •) [complex, inout] – spin susceptibility

Options:
  • axis [character(len=*)] – Can be "m" for Matsubara (default), "r" for real

  • z (•) [complex] – User provided array of complex frequency where to evaluate Self

interface  ed_io/ed_get_dens(self[, iorb])

This subroutine gets from the EDIpack2 library the value of the impurity dens susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity dens susceptibility function is an array having the following possible dimensions:

Parameters:

self (various shapes) [real] – The density value or array of values

Options:

iorb [integer] – the orbital index

interface  ed_io/ed_get_mag(self[, component, iorb])

This subroutine gets from the EDIpack2 library the value of the magnetization and passes it to the user.

The self variable can have the following dimensions:

  • scalar: if component and iorb are provided returns given magnetization component for that orbital

  • [norb]: returns the specified magnetization component for all orbitals

  • [3 , norb, ]: returns all components for all orbitals

Parameters:

self (various shapes) [real] – Magnetization

Options:
  • component [character(len=1)] – Component of the magnetization, can be "x", "y", "z" (default "z" )

  • iorb [integer] – Orbital (default 1)

interface  ed_io/ed_get_docc(self[, iorb])

This subroutine gets from the EDIpack2 library the value of the double occupation and passes it to the user.

The self variable can have the following dimensions:

  • scalar: if iorb is provided for single-impurity DMFT, dobule-occupation for that orbital

  • [norb]: if no optional variable is provided for single-impurity DMFT, double-occupation for all orbitals

Parameters:

self (various shapes) [real] – double-occupation value or array of values

Options:

iorb [integer] – orbital index

interface  ed_io/ed_get_phi(self[, iorb, jorb])

This subroutine gets from the EDIpack2 library the value of the superconducting order parameter \(\phi\) ( ed_mode = superc ) and passes it to the user.

The self variable can have the following dimensions:

  • scalar: if iorb is provided for single-impurity DMFT, \(\phi\) for that orbital

  • [norb]: for single-impurity DMFT, \(\phi\) for all diagonal orbitals

  • [norb , norb]: for single-impurity DMFT, \(\phi\) for all orbitals

Parameters:

self (various shapes) [real]\(\phi\) value or array of values

Options:
  • iorb [integer] – first orbital index

  • jorb [integer] – second orbital index

interface  ed_io/ed_get_exct(self, component[, iorb, jorb])

This subroutine gets from the EDIpack2 library the value of the impurity exct susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies lmats or lreal .

The impurity exct susceptibility function is an array having the following possible dimensions:

Parameters:
  • self (various shapes) [real]\([S_0,T_z]\) value or array of values

  • component [integer]

Options:
  • iorb [integer] – first orbital index

  • jorb [integer] – second orbital index

interface  ed_io/ed_get_eimp(self)

This subroutine gets from the EDIpack2 library and passes to the user the array [ ed_epot , ed_eint , ed_ehartree , ed_eknot ]. These are the expectation values various contribution to the internal energy

  • ed_epot = energy contribution from the interaction terms, including the Hartree term

  • ed_eint = energy contribution from the interaction terms, excluding the Hartree term

  • ed_ehartree = \(-\frac{U}{2} \sum_{i} \langle n_{i\uparrow} + n_{i\downarrow} \rangle -\frac{2U^{'}-J_{H}}{2} \sum_{i < j} \langle n_{i\uparrow}+n_{i\downarrow} + n_{i\downarrow}+n_{j\downarrow} \rangle +\frac{U}{4} + \frac{2U^{'}-J_{H}}{2}\) for \(i,j\) orbitals

  • ed_eknot = kinetic term from the local 1-body Hamiltonian

The returned array can have the following dimensions:

  • [4]: for single-site DMFT

Parameters:

self (•) [real] – energy components array

interface  ed_io/ed_get_epot(self)

This subroutine gets from the EDIpack2 library and passes to the user the value of ed_epot, the energy contribution from the interaction terms, including the Hartree term. The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of ed_epot

interface  ed_io/ed_get_eint(self)

This subroutine gets from the EDIpack2 library and passes to the user the value of ed_int, the energy contribution from the interaction terms, excluding the Hartree term. The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of ed_int

interface  ed_io/ed_get_ehartree(self)

This subroutine gets from the EDIpack2 library and passes to the user the value of the Hartree potential ed_ehartree. The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of ed_ehartree

interface  ed_io/ed_get_eknot(self)

This subroutine gets from the EDIpack2 library and passes to the user the value ed_eknot, the kinetic term from the local 1-body Hamiltonian The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of ed_eknot

interface  ed_io/ed_get_doubles(self)

This subroutine gets from the EDIpack2 library and passes to the user the array [ ed_dust , ed_dund , ed_dse , ed_dph ]. These are the expectation values of the two-body operators associated with the density-density inter-orbital interaction (with opposite and parallel spins), spin-exchange and pair-hopping.

  • ed_dust = \(\sum_{i < j} n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{j\uparrow}\) for \(i,j\) orbitals

  • ed_dund = \(\sum_{i < j} n_{i\uparrow}n_{j\uparrow} + n_{i\downarrow}n_{j\downarrow}\) for \(i,j\) orbitals

  • ed_dse = \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{j\uparrow}c_{i\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals

  • ed_dph = \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{j\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals

The returned array can have the following dimensions:

  • [4]: for single-site DMFT

Parameters:

self (•) [real] – array of two-body terms expectation values

interface  ed_io/ed_get_dust(self)

This subroutine gets from the EDIpack2 library and passes to the user the value of ed_dust = \(\sum_{i < j} n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of dust

interface  ed_io/ed_get_dund(self)

This subroutine gets from the EDIpack2 library and passes to the user the value of ed_dund = \(\sum_{i < j} n_{i\uparrow}n_{j\uparrow} + n_{i\downarrow}n_{j\downarrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of dund

interface  ed_io/ed_get_dse(self)

This subroutine gets from the EDIpack2 library and passes to the user the value of ed_dse = \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{j\uparrow}c_{i\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of dse

interface  ed_io/ed_get_dph(self)

This subroutine gets from the EDIpack2 library and passes to the user the value of ed_dph = \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{j\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:

  • scalar: for single-site DMFT

Parameters:

self [real] – value of dph

interface  ed_io/ed_get_sp_dm(dm[, iprint])

This subroutine returns to the user the impurity single particle density matrix. The density matrix is an array having the following possible dimensions:

Parameters:

dm (various shapes) [complex, out]

Options:

iprint [logical] – ,custom_rot,dm_eig_,dm_rot_)

interface  ed_io/ed_get_impurity_rdm(rdm[, doprint])

This subroutine returns to the user the impurity reduced density matrix (RDM). The RDM is an array having the following dimensions:

  • [\(4^N\) , \(4^N\) ] where \(N\) = Norb

Parameters:

rdm (•, •) [complex, inout]

Options:

doprint [logical, in]

subroutine  ed_io/ed_get_imp_info(self)
Parameters:

self (2) [real]

Use :

ed_input_vars (nspin, norb)

subroutine  ed_io/ed_get_evals(self)
Parameters:

self (•) [real, allocatable]

function  ed_io/ed_get_nsectors()
Result:

n [integer]

subroutine  ed_io/ed_get_neigen_sector(nvec)
Parameters:

nvec (nsectors) [integer]

subroutine  ed_io/ed_set_neigen_sector(nvec)
Parameters:

nvec (nsectors) [integer]

subroutine  ed_io/ed_get_quantum_soc_operators()

This subroutine gets and prints the values of the components \(\overrightarrow{L}\), \(\overrightarrow{S}\), \(\overrightarrow{J}\) in the chosen basis depending on jz_basis, and prints them on the files "L_imp_"//reg(str(ndx))//".dat" , "S_imp_"//reg(str(ndx))//".dat" and "J_imp_"//reg(str(ndx))//".dat" , where ndx is the inequivalent impurity site for real-space DMFT (if that is the case). The ordering of the results in the output files is described by comments in the files themselves