.. _chi_spin: Spin Susceptibility ================================== In :f:mod:`ed_chi_spin` we evaluate the impurity spin-spin susceptibility, defined as: .. math:: \chi^{z}_{ab}(\omega) = \langle S^z_a(\omega) S^z_b(\omega) \rangle = \frac{1}{\cal Z}\sum_n e^{-\beta E_n} \langle n | S^z_a [\omega-H]^{-1} S^z_b | n \rangle where :math:`S^z_a` is the z-component of the spin operator of the orbital :math:`a` and :math:`\omega \in {\mathbb C}`. As for the Green's functions, the susceptibility is evaluated using the dynamical Lanczos method: a) the partial tridiagonalization of the sector Hamiltonian :math:`H` with quantum numbers :math:`\vec{Q}=[\vec{N}_\uparrow,\vec{N}_\downarrow]` on the Krylov basis of :math:`S^z_a|n\rangle` is obtained; b) the resulting tridiagonal matrix is further diagonalized to obtained excitations amplitudes or **weights** :math:`\langle m | S^z_a | n \rangle` for any state :math:`| m \rangle` in the spectrum (*without knowing the state itself* ) and the excitations energies :math:`\delta E = E_m - E_n` or **poles**; c) an controlled approximation to the Kallen-Lehmann sum is constructed for :math:`a,b=1,\dots,N_{\rm orb}`. .. note:: A more general susceptibility function for the other components of the spin operators :math:`S_x, S_y` should be implemented. .. f:automodule:: ed_chi_spin