.. _chi_pair: Pair Susceptibility ============================ In :f:mod:`ed_chi_dens` we evaluate the impurity pair susceptibility, defined as: .. math:: \chi^{\Delta}_{ab}(\omega) = \langle \Delta_a(\omega) \Delta_b(\omega) \rangle = \frac{1}{\cal Z}\sum_m e^{-\beta E_m} \langle m | \Delta_a [\omega-H]^{-1} \Delta_b | m \rangle where :math:`\Delta_a = c_{a\uparrow} c_{a\downarrow}` is the fermion singlet pair operator of the orbital :math:`a` and :math:`\omega \in {\mathbb C}`. As for the Green's functions, the susceptibility is evaluated using the dynamical Lanczos method: a) the partial tridiagonalization of the sector Hamiltonian :math:`H` with quantum numbers :math:`\vec{Q}=[\vec{N}_\uparrow,\vec{N}_\downarrow]` on the Krylov basis of :math:`n_a|m\rangle` is obtained; b) the resulting tridiagonal matrix is further diagonalized to obtained excitations amplitudes or **weights** :math:`\langle p | \Delta_a | m \rangle` for any state :math:`| p \rangle` in the spectrum (*without knowing the state itself* ) and the excitations energies :math:`\delta E = E_p - E_m` or **poles**; c) an controlled approximation to the Kallen-Lehmann sum is constructed for :math:`a,b=1,\dots,N_{\rm orb}`. .. f:automodule:: ed_chi_pair