.. _chi_exct: Exciton Susceptibility ============================ In :f:mod:`ed_chi_exct` we evaluate the impurity exciton-exciton susceptibility, defined as: .. math:: \chi^{X}_{ab}(\omega) = \langle {X}^\dagger_{ab}(\omega) X_{ab}(\omega) \rangle = \frac{1}{\cal Z}\sum_m e^{-\beta E_m} \langle m | X^\dagger_{ab} [\omega-H]^{-1} X_{ab} | m \rangle where :math:`X_{ab}=S_{ab},T^x_{ab},T^y_{ab},T^z_{ab}` are, respectively, the singlet and triplet :math:`x,y,z` exciton operators: .. math:: S_{ab} & = \sum_{rs} c^\dagger_{ar} \sigma^0_{rs} c_{bs}\\ T^x_{ab} & = \sum_{rs} c^\dagger_{ar} \sigma^x_{rs} c_{bs}\\ T^y_{ab} & = \sum_{rs} c^\dagger_{ar} \sigma^y_{rs} c_{bs}\\ T^z_{ab} & = \sum_{rs} c^\dagger_{ar} \sigma^z_{rs} c_{bs} and :math:`\omega \in {\mathbb C}`. As for the Green's functions, the susceptibility is evaluated using the dynamical Lanczos method: a) the partial tridiagonalization of the sector Hamiltonian :math:`H` with quantum numbers :math:`\vec{Q}=[\vec{N}_\uparrow,\vec{N}_\downarrow]` on the Krylov basis of :math:`X_{ab}|m\rangle` is obtained; b) the resulting tridiagonal matrix is further diagonalized to obtained excitations amplitudes or **weights** :math:`\langle p | X_{ab} | m \rangle` for any state :math:`| p \rangle` in the spectrum (*without knowing the state itself* ) and the excitations energies :math:`\delta E = E_p - E_m` or **poles**; c) an controlled approximation to the Kallen-Lehmann sum is constructed for :math:`a,b=1,\dots,N_{\rm orb}`. .. f:automodule:: ed_chi_exct