.. _hamiltonian: Hamiltonian Setup ----------------------------------------------- .. f:automodule:: ed_hamiltonian :hide-output: True The :f:mod:`ED_HAMILTONIAN` module wraps all the different Hamiltonian setup procedures for each operational modes, as described below. Normal mode ----------------------------------------------- This set of modules implements the Hamiltonian setup for each symmetry sector assuming :math:`\vec{Q}=\left[\vec{N}_\uparrow,\vec{N}_\downarrow \right]`. Where :math:`\vec{N}_\sigma=N_\sigma` if the total number of electrons with spin :math:`\sigma` is conserved (:f:var:`ed_total_ud` = T ) or :math:`\vec{N}_\sigma=[ N_{1\sigma},\dots,N_{N_{orb}\sigma} ]` if the number of electrons in the orbital :math:`\alpha=1,\dots,N_{orb}` and spin :math:`\sigma` is conserved (:f:var:`ed_total_ud` = F). This case corresponds to the normal phase in presence of spin conservation, possibly reduced to :math:`U(1)` in presence of long range magnetic order along :math:`z` quantization axis of the spin operator. .. toctree:: :maxdepth: 2 :glob: normal/02_hamiltonian normal/02_hamiltonian_common normal/02_hamiltonian_sparse normal/02_hamiltonian_direct Superconductive mode ----------------------------------------------- This set of modules implements the Hamiltonian setup for each symmetry sector assuming :math:`\vec{Q}\equiv S_z=N_\uparrow-N_\downarrow`. This case corresponds to the superconductive phase with :math:`s-` wave pairing. .. toctree:: :maxdepth: 2 :glob: superc/02_hamiltonian superc/02_hamiltonian_sparse superc/02_hamiltonian_direct Non-SU(2) mode ----------------------------------------------- This set of modules implements the Hamiltonian setup for each symmetry sector assuming :math:`\vec{Q}\equiv N_{tot}=N_\uparrow+N_\downarrow`. This case corresponds to the normal phase in the absence of spin conservation, as for instance in presence of Spin-Orbit coupling. .. toctree:: :maxdepth: 2 :glob: nonsu2/02_hamiltonian nonsu2/02_hamiltonian_sparse nonsu2/02_hamiltonian_direct