Input / Output Functions
Description
Contains a set of routines that retrieve quantities such as Green's functions, self-energies (see ed_greens_functions ) and observables (from ed_observables ) and pass them to the user, as well ass routines to read and store Green's function and self-energies.
Quick access
- Routines:
ed_get_argphi(),ed_get_dens(),ed_get_denschi(),ed_get_dimp(),ed_get_docc(),ed_get_doubles(),ed_get_dph(),ed_get_dse(),ed_get_dund(),ed_get_dust(),ed_get_ehartree(),ed_get_eimp(),ed_get_eint(),ed_get_eknot(),ed_get_epot(),ed_get_evals(),ed_get_exct(),ed_get_exctchi(),ed_get_g0imp(),ed_get_gimp(),ed_get_imp_info(),ed_get_impurity_rdm(),ed_get_mag(),ed_get_neigen_sector(),ed_get_nsectors(),ed_get_pairchi(),ed_get_phi(),ed_get_quantum_soc_operators(),ed_get_sigma(),ed_get_sp_dm(),ed_get_spinchi(),ed_set_neigen_sector()
Used modules
ed_input_vars: User-accessible input variablesed_vars_global: Global variable accessible throughout the codeed_aux_funx: Assortment of auxiliary procedures required throughout the codeed_setup: Routines for solver environment initialization and finalizationed_bath: Routines for bath creation and manipulationed_greens_functions: Routines for Green's functions calculationed_chi_functions: Routines for susceptibilities calculation
External modules
Subroutines and functions
- interface ed_io/ed_get_gimp(self[, axis, type, z])
This subroutine gets from the EDIpack library the value of the impurity Green's function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.The impurity Green's function is an array having the following possible dimensions:
- Parameters:
self (various shapes) [complex, inout] – Green's function matrix
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realtype [character(len=*)] – Can be
"n"for Normal (default),"a"for anomalousz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_dimp(self[, axis, z])
This subroutine gets from the EDIpack library the value of the impurity phonon's Green's function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.The impurity phonon's Green's function is an array having the following possible dimensions:
- Parameters:
self (•) [complex, inout] – phonon's Green's function matrix
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_sigma(self[, axis, type, z])
- This subrotine gets from the EDIpack library the value of the self-energy calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.The self-energy is an array having the following possible dimensions:- Parameters:
self (various shapes) [complex, inout] – Green's function matrix
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realtype [character(len=*)] – Can be
"n"for Normal (default),"a"for anomalousz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_g0imp(self, bath[, axis, type, z])
- This subroutine gets from the EDIpack library the value of the impurity non-interacting Green's function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.It autonomously decides whether the system is single-impurity or real-space DMFT based on thebathshapeThe impurity non-interacting Green's function is an array having the following possible dimensions:
The bath is an array having the following dimension:
[
nb] for single-impurity DMFT
Where
nbis the length of thebatharray.- Parameters:
self (various shapes) [complex, inout] – Green's function matrix
bath (•) [real] – The bath vector
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realtype [character(len=*)] – Can be
"n"for Normal (default),"a"for anomalousz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_spinchi(self[, axis, z])
This subroutine gets from the EDIpack library the value of the impurity spin susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.The impurity spin susceptibility function is an array having the following possible dimensions:
- Parameters:
self (•, •, •) [complex, inout] – spin susceptibility
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_denschi(self[, axis, z])
This subroutine gets from the EDIpack library the value of the impurity dens susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.The impurity dens susceptibility function is an array having the following possible dimensions:
- Parameters:
self (•, •, •) [complex, inout] – spin susceptibility
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_pairchi(self[, axis, z])
This subroutine gets from the EDIpack library the value of the impurity pair susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.The impurity pair susceptibility function is an array having the following possible dimensions:
- Parameters:
self (•, •, •) [complex, inout] – spin susceptibility
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_exctchi(self[, axis, z])
This subroutine gets from the EDIpack library the value of the impurity exct susceptibility function calculated on the Matsubara or real-frequency axis, with number of frequencies
lmatsorlreal.The impurity exct susceptibility function is an array having the following possible dimensions:
- Parameters:
self (•, •, •, •) [complex, inout] – spin susceptibility
- Options:
axis [character(len=*)] – Can be
"m"for Matsubara (default),"r"for realz (•) [complex] – User provided array of complex frequency where to evaluate Self
- interface ed_io/ed_get_dens(self[, iorb])
This subroutine gets from the EDIpack library the value of the charge density and passes it to the user.
The
selfvariable can have the following dimensions:scalar: if
iorbis provided for single-impurity DMFT, density for that orbital[
norb]: if no optional variable is provided for single-impurity DMFT, density for all orbitals
- Parameters:
self (various shapes) [real] – The density value or array of values
- Options:
iorb [integer] – the orbital index
- interface ed_io/ed_get_mag(self[, component, iorb])
This subroutine gets from the EDIpack library the value of the magnetization and passes it to the user.
The
selfvariable can have the following dimensions:- Parameters:
self (various shapes) [real] – Magnetization
- Options:
component [character(len=1)] – Component of the magnetization, can be
"x","y","z"(default"z")iorb [integer] – Orbital (default
1)
- interface ed_io/ed_get_docc(self[, iorb])
This subroutine gets from the EDIpack library the value of the double occupation and passes it to the user.
The
selfvariable can have the following dimensions:scalar: if
iorbis provided for single-impurity DMFT, dobule-occupation for that orbital[
norb]: if no optional variable is provided for single-impurity DMFT, double-occupation for all orbitals
- Parameters:
self (various shapes) [real] – double-occupation value or array of values
- Options:
iorb [integer] – orbital index
- interface ed_io/ed_get_phi(self[, arg, iorb, jorb])
This subroutine gets from the EDIpack library the modulus of the superconducting order parameter \(|\phi|\) (
ed_mode=superc) and passes it to the user.The
selfvariable can have the following dimensions:- Parameters:
self (various shapes) [real] – \(\phi\) value or array of values
- Options:
arg (various shapes) [real] – \(\theta\) value or array of values
iorb [integer] – first orbital index
jorb [integer] – second orbital index
- interface ed_io/ed_get_argphi(self[, iorb, jorb])
This subroutine gets from the EDIpack library the argument of the superconducting order parameter \(\theta=tan^{-1}(Im\phi/Re\phi)\) (
ed_mode=superc) and passes it to the user.The
selfvariable can have the following dimensions:- Parameters:
self (various shapes) [real] – \(\theta\) value or array of values
- Options:
iorb [integer] – first orbital index
jorb [integer] – second orbital index
- interface ed_io/ed_get_exct(self, component[, iorb, jorb])
This subroutine gets from the EDIpack library the value of the excitonic order parameters \(X^a\) (
ed_mode=normal,:code:nonsu2 ) and passes it to the user.The
selfvariable can have the following dimensions:scalar: if
iorbis provided returns \(X\) between orbital and orbital+1 forcomponent[4]: returns \(X\) for all
componentand optional orbitalsiorb, jorb[default (1,2)].[
norb,norb]: for single-impurity DMFT, \(X\) for all orbitals andcomponent[4,
norb,norb]: for single-impurity DMFT, \(X\) for all orbitals and allcomponent
- Parameters:
self (various shapes) [real] – \({S_0,T_x,T_y,T_z}\) value
component [character(len=1)]
- Options:
iorb [integer] – first orbital index
jorb [integer] – second orbital index
- interface ed_io/ed_get_eimp(self)
This subroutine gets from the EDIpack library and passes to the user the array [
ed_epot,ed_eint,ed_ehartree,ed_eknot]. These are the expectation values various contribution to the internal energyed_epot= energy contribution from the interaction terms, including the Hartree termed_eint= energy contribution from the interaction terms, excluding the Hartree termed_ehartree= \(-\frac{U}{2} \sum_{i} \langle n_{i\uparrow} + n_{i\downarrow} \rangle -\frac{2U^{'}-J_{H}}{2} \sum_{i < j} \langle n_{i\uparrow}+n_{i\downarrow} + n_{i\downarrow}+n_{j\downarrow} \rangle +\frac{U}{4} + \frac{2U^{'}-J_{H}}{2}\) for \(i,j\) orbitalsed_eknot= kinetic term from the local 1-body Hamiltonian
The returned array can have the following dimensions:
[
4]: for single-site DMFT
- Parameters:
self (•) [real] – energy components array
- interface ed_io/ed_get_epot(self)
This subroutine gets from the EDIpack library and passes to the user the value of
ed_epot, the energy contribution from the interaction terms, including the Hartree term. The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
ed_epot
- interface ed_io/ed_get_eint(self)
This subroutine gets from the EDIpack library and passes to the user the value of
ed_int, the energy contribution from the interaction terms, excluding the Hartree term. The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
ed_int
- interface ed_io/ed_get_ehartree(self)
This subroutine gets from the EDIpack library and passes to the user the value of the Hartree potential
ed_ehartree. The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
ed_ehartree
- interface ed_io/ed_get_eknot(self)
This subroutine gets from the EDIpack library and passes to the user the value
ed_eknot, the kinetic term from the local 1-body Hamiltonian The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
ed_eknot
- interface ed_io/ed_get_doubles(self)
This subroutine gets from the EDIpack library and passes to the user the array [
ed_dust,ed_dund,ed_dse,ed_dph]. These are the expectation values of the two-body operators associated with the density-density inter-orbital interaction (with opposite and parallel spins), spin-exchange and pair-hopping.ed_dust= \(\sum_{i < j} n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{j\uparrow}\) for \(i,j\) orbitalsed_dund= \(\sum_{i < j} n_{i\uparrow}n_{j\uparrow} + n_{i\downarrow}n_{j\downarrow}\) for \(i,j\) orbitalsed_dse= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{j\uparrow}c_{i\downarrow}c_{j\uparrow}\) for \(i,j\) orbitalsed_dph= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{j\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals
The returned array can have the following dimensions:
[
4]: for single-site DMFT
- Parameters:
self (•) [real] – array of two-body terms expectation values
- interface ed_io/ed_get_dust(self)
This subroutine gets from the EDIpack library and passes to the user the value of
ed_dust= \(\sum_{i < j} n_{i\uparrow}n_{j\downarrow} + n_{i\downarrow}n_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
dust
- interface ed_io/ed_get_dund(self)
This subroutine gets from the EDIpack library and passes to the user the value of
ed_dund= \(\sum_{i < j} n_{i\uparrow}n_{j\uparrow} + n_{i\downarrow}n_{j\downarrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
dund
- interface ed_io/ed_get_dse(self)
This subroutine gets from the EDIpack library and passes to the user the value of
ed_dse= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{j\uparrow}c_{i\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
dse
- interface ed_io/ed_get_dph(self)
This subroutine gets from the EDIpack library and passes to the user the value of
ed_dph= \(\sum_{i < j} c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}c_{j\downarrow}c_{j\uparrow}\) for \(i,j\) orbitals The returned array can have the following dimensions:scalar: for single-site DMFT
- Parameters:
self [real] – value of
dph
- interface ed_io/ed_get_sp_dm(dm[, iprint])
This subroutine returns to the user the impurity single particle density matrix. The density matrix is an array having the following possible dimensions:
- Parameters:
dm (various shapes) [complex, out]
- Options:
iprint [logical] – ,custom_rot,dm_eig_,dm_rot_)
- interface ed_io/ed_get_impurity_rdm(rdm[, doprint])
This subroutine returns to the user the impurity reduced density matrix (RDM). The RDM is an array having the following dimensions:
[\(4^N\) , \(4^N\) ] where \(N\) =
Norb
- Parameters:
rdm (•, •) [complex, inout]
- Options:
doprint [logical, in]
- subroutine ed_io/ed_get_imp_info(self)
- Parameters:
self (2) [real]
- Use :
- subroutine ed_io/ed_get_evals(self)
- Parameters:
self (•) [real, allocatable]
- function ed_io/ed_get_nsectors()
- Result:
n [integer]
- subroutine ed_io/ed_get_quantum_soc_operators()
This subroutine gets and prints the values of the components \(\overrightarrow{L}\), \(\overrightarrow{S}\), \(\overrightarrow{J}\) in the chosen basis depending on
jz_basis, and prints them on the files"L_imp_"//reg(str(ndx))//".dat","S_imp_"//reg(str(ndx))//".dat"and"J_imp_"//reg(str(ndx))//".dat", wherendxis the inequivalent impurity site for real-space DMFT (if that is the case). The ordering of the results in the output files is described by comments in the files themselves